Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Electron. j. biotechnol ; 29: 22-31, sept. 2017. ilus, tab, graf
Article in English | LILACS | ID: biblio-1017065

ABSTRACT

Background: Reconstruction of customized cranial implants with a mesh structure using computer-assisted design and additive manufacturing improves the implant design, surgical planning, defect evaluation, implant-tissue interaction and surgeon's accuracy. The objective of this study is to design, develop and fabricate cranial implant with mechanical properties closer to that of bone and drastically decreases the implant failure and to improve the esthetic outcome in cranial surgery with precision fitting for a better quality of life. A customized cranial mesh implant is designed digitally, based on the Digital Imaging and Communication in Medicine files and fabricated using state of the Art-Electron Beam Melting an Additive Manufacturing technology. The EBM produced titanium implant was evaluated based on their mechanical strength and structural characterization. Results: The result shows, the produced mesh implants have a high permeability of bone ingrowth with its reduced weight and modulus of elasticity closer to that the natural bone thus reducing the stress shielding effect. Scanning electron microscope and micro-computed tomography (CT) scanning confirms, that the produced cranial implant has a highly regular pattern of the porous structure with interconnected channels without any internal defect and voids. Conclusions: The study reveals that the use of mesh implants in cranial reconstruction satisfies the need of lighter implants with an adequate mechanical strength, thus restoring better functionality and esthetic outcomes for the patients.


Subject(s)
Humans , Prosthesis Design/methods , Skull , Surgical Mesh , Titanium/chemistry , Computer-Aided Design , Plastic Surgery Procedures/instrumentation , Mechanical Phenomena , Prostheses and Implants , Porosity , Imaging, Three-Dimensional , Elasticity , Electrons
2.
Journal of Medical Biomechanics ; (6): 256-260, 2017.
Article in Chinese | WPRIM | ID: wpr-616724

ABSTRACT

Objective To study the micro-pore architecture and mechanical properties of porous titanium scaffolds with diamond molecule structure produced by 3D print technology,so as to guide the development of 3D-prinited porous titanium orthopedic implants.Methods Selective laser melting (SLM) and electron beam melting (EBM) were used to fabricate porous Ti6Al4V scaffolds with diamond molecule structure.The micro-pore architectures of those scaffolds were observed using optical microscope and scanning electron microscope (SEM),and universal material testing machine was used to conduct compressive test on the scaffolds.Results Both SLM and EBM techniques had machining error and half-melted metal particles were found on the strut surface.The relative error of strut size produced by SLM and EMB was 20.9%-35.8% and-9.1%-46.8%,respectively.The scaffold with strut width of 0.2 mm could not be produced by EBM.The compressive strength and elastic modulus of the scaffold fabricated by SLM was 99.7-192.6 MPa and 2.43-4.23 GPa,respectively.The compressive strength and elastic modulus of the scaffold fabricated by SLM was 39.5-96.9 MPa and 1.44-2.83 GPa,respectively.Conclusions The manufacturing precision of SLM is higher than that of EBM.Porosity is the main factor that affects the compressive strength and elastic modulus of the scaffolds.In the same process,with the increase of porosity,both the compressive strength and elastic modulus decrease.When the porosities are similar,the scaffolds fabricated by SLM possess higher compressive strength and elastic modulus than those by SLM.

3.
Journal of Medical Biomechanics ; (6): 256-260, 2017.
Article in Chinese | WPRIM | ID: wpr-737333

ABSTRACT

Objective To study the micro-pore architecture and mechanical properties of porous titanium scaffolds with diamond molecule structure produced by 3D print technology,so as to guide the development of 3D-prinited porous titanium orthopedic implants.Methods Selective laser melting (SLM) and electron beam melting (EBM) were used to fabricate porous Ti6Al4V scaffolds with diamond molecule structure.The micro-pore architectures of those scaffolds were observed using optical microscope and scanning electron microscope (SEM),and universal material testing machine was used to conduct compressive test on the scaffolds.Results Both SLM and EBM techniques had machining error and half-melted metal particles were found on the strut surface.The relative error of strut size produced by SLM and EMB was 20.9%-35.8% and-9.1%-46.8%,respectively.The scaffold with strut width of 0.2 mm could not be produced by EBM.The compressive strength and elastic modulus of the scaffold fabricated by SLM was 99.7-192.6 MPa and 2.43-4.23 GPa,respectively.The compressive strength and elastic modulus of the scaffold fabricated by SLM was 39.5-96.9 MPa and 1.44-2.83 GPa,respectively.Conclusions The manufacturing precision of SLM is higher than that of EBM.Porosity is the main factor that affects the compressive strength and elastic modulus of the scaffolds.In the same process,with the increase of porosity,both the compressive strength and elastic modulus decrease.When the porosities are similar,the scaffolds fabricated by SLM possess higher compressive strength and elastic modulus than those by SLM.

4.
Journal of Medical Biomechanics ; (6): 256-260, 2017.
Article in Chinese | WPRIM | ID: wpr-735865

ABSTRACT

Objective To study the micro-pore architecture and mechanical properties of porous titanium scaffolds with diamond molecule structure produced by 3D print technology,so as to guide the development of 3D-prinited porous titanium orthopedic implants.Methods Selective laser melting (SLM) and electron beam melting (EBM) were used to fabricate porous Ti6Al4V scaffolds with diamond molecule structure.The micro-pore architectures of those scaffolds were observed using optical microscope and scanning electron microscope (SEM),and universal material testing machine was used to conduct compressive test on the scaffolds.Results Both SLM and EBM techniques had machining error and half-melted metal particles were found on the strut surface.The relative error of strut size produced by SLM and EMB was 20.9%-35.8% and-9.1%-46.8%,respectively.The scaffold with strut width of 0.2 mm could not be produced by EBM.The compressive strength and elastic modulus of the scaffold fabricated by SLM was 99.7-192.6 MPa and 2.43-4.23 GPa,respectively.The compressive strength and elastic modulus of the scaffold fabricated by SLM was 39.5-96.9 MPa and 1.44-2.83 GPa,respectively.Conclusions The manufacturing precision of SLM is higher than that of EBM.Porosity is the main factor that affects the compressive strength and elastic modulus of the scaffolds.In the same process,with the increase of porosity,both the compressive strength and elastic modulus decrease.When the porosities are similar,the scaffolds fabricated by SLM possess higher compressive strength and elastic modulus than those by SLM.

5.
Journal of Practical Stomatology ; (6): 173-177, 2016.
Article in Chinese | WPRIM | ID: wpr-486043

ABSTRACT

Objective:To study the fit of pure titanium single crown fabricated by electron beam melting(EBM).Methods:Pure titanium crowns were fabricated by EBM,selective laser melting(SLM),CAD/CAM(R +K and DMG)and conventional lost wax technique(LW)respectively(n =5).Marginal and internal gap was copied by light-body silicone and measured using a digital mi-croscope .The data of marginal gap(MG)and internal gap(IG)were statisticaly analysed by ANOVA and SPSS statistical package version 17.0.Results:The MG and IG(μm)of pure titanium crowns in EBM group were 38.42 ±6.72 and 105.54 ±33.18,in SLMgroup 38.63 ±6.82 and 114.63 ±52.18,in DMG CAD/CAMgroup 26.18 ±4.36 and 102.18 ±40.81,in R +K CAD/CAM group 26.98 ±4.44 and 102.24 ±25.30,in LW group were 42.61 ±5.73 and 102.98 ±45.67,respectively.The marginal fit of the EBMgroup was significantly smaller than 120 μm of the generally accepted clinical standards.In the 2 CAD/CAM groups the MG was smaller than that of other 3 groups(P 0.05).Conclu-sion:The marginal fit of titanium single crown fabricated by EBMis similar to that by SLM,better than that of LW and inferior than that of CAD/CAM.The internal fit of the crowns made by the 5 systems is similar.

SELECTION OF CITATIONS
SEARCH DETAIL